A DFT Study on Stability and Electronic Structure of AlN Nanotubes

2021 
Abstract Structural, energetic, electronic, reactivity and stability properties of armchair (3,3), (4,4), (5,5), (6,6), (7,7), (8,8), (9,9) and (10,10) aluminum nitride nanotubes (AlNNTs) with different diameter have been probed using density functional theory (DFT) in terms of Moreover, the chemical reactivity characteristics of AlNNTs have performed via some of the quantum molecular descriptors. Our results also indicate that the increasing diameter of AlNNTs gives rise to notable changes in the electronic structure of the AlNNTs. Moreover, results for UV/vis spectra of AlNNTs indicate that the maximum wavelength absorption lie in the range 188-194 nm. The number Al-N bonds and segregation phenomena of Al and N atoms in the AlNNTs have been investigated to better understand the stability of AlNNTs. Besides, the energy gap and chemical hardness enhance with increase diameter of AlNNTs, thus resulting in a rise in the stability, while the AlNNTs with smaller can be considered as a candidate for the adsorption of gas molecules and drugs for nano-electronic applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    1
    Citations
    NaN
    KQI
    []