New actuator disk model for propeller-aircraft computation

2016 
There is a growing interest in propellers for transport aircraft as well as regional airliners from the viewpoint of energy saving. An important consideration for utilizing a propeller propulsion system on aircraft is the aerodynamic interaction between the propeller slipstream and other aerodynamic surfaces. It is therefore necessary to use a simplified but relatively accurate tool for propeller modeling, with the widely used actuator disk model. The advantage of this model is that it is easy to use and inexpensive in terms of computation time required. In addition, it also produces acceptable results. In this study, a new regionalized actuator disk model was utilized in the analysis of propeller slipstream interference effects on a real four-propeller aircraft. The results are compared with the cases of inactive actuator disks, which shows that the propeller slipstream causes an increase in the lift and drag coefficients. An evident yawing effect caused by the rotating slipstream was noticed, which should be taken into account in the design phase. The regionalized actuator disk model is evaluated as a fast and relatively accurate model for propeller preliminary design.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    11
    References
    2
    Citations
    NaN
    KQI
    []