Exposure of Mycobacteria to Cell Wall-inhibitory Drugs Decreases Production of Arabinoglycerolipid Related to Mycolyl-arabinogalactan-peptidoglycan Metabolism

2012 
The “cell wall core” consisting of a mycolyl-arabinogalactan-peptidoglycan (mAGP) complex represents the hallmark of the mycobacterial cell envelope. It has been the focus of intense research at both structural and biosynthetic levels during the past few decades. Because it is essential, mAGP is also regarded as a target for several antitubercular drugs. Herein, we demonstrate that exposure of Mycobacterium bovis Bacille Calmette-Guerin or Mycobacterium marinum to thiacetazone, a second line antitubercular drug, is associated with a severe decrease in the level of a major apolar glycolipid. This inhibition requires MmaA4, a methyltransferase reported to participate in the activation process of thiacetazone. Following purification, this glycolipid was subjected to detailed structural analyses, combining gas-liquid chromatography, mass spectrometry, and nuclear magnetic resonance. This allowed to identify it as a 5-O-mycolyl-β-Araf-(1→2)-5-O-mycolyl-α-Araf-(1→1)-Gro, designated dimycolyl diarabinoglycerol (DMAG). The presence of DMAG was subsequently confirmed in other slow growing pathogenic species, including Mycobacterium tuberculosis. DMAG production was stimulated in the presence of exogenous glycerol. Interestingly, DMAG appears structurally identical to the terminal portion of the mycolylated arabinosyl motif of mAGP, and the metabolic relationship between these two components was provided using antitubercular drugs such as ethambutol or isoniazid known to inhibit the biosynthesis of arabinogalactan or mycolic acid, respectively. Finally, DMAG was identified in the cell wall of M. tuberculosis. This opens the possibility of a potent biological function for DMAG that may be important to mycobacterial pathogenesis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    26
    Citations
    NaN
    KQI
    []