Detection of the effect of nanoparticles on myelin figures growth using a compact digital holographic microscope

2013 
Digital holographic microscopy (DHM) is an effective and non-destructive technique for quantitative phase contrast imaging of biological samples and living organelles. In this paper, using a simple and stable common-path DHM setup we study lipid bilayer dynamics and detect their morphological changes. Stacks of lipid amphiphilic molecules in excess water and at the presence of an external stimulus, stress, or force have great capability for the formation of multilamellar cylindrical tubes that are called myelin figures(MFs). MFs can be found in various healthy and diseased living cells and their formation and dynamics in various conditions involve mysterious configurations that have been of high interest. We utilized nanoparticles solved in water with different concentrations as an external stimulus for MFs of POPC lipid. The nanoparticles are injected into the sample container via a microinjection pump in a constant rate and MFs growth rate and their volume changes are measured by a compact digital holographic system. The setup is based on a binocular conventional microscope making the setup very stable against vibrations and noises. The recorded holograms are then computationally reconstructed. The measurements and investigations are performed by analyzing the reconstruction process. We showed that nanoparticles increase the growth rate of MFs during the first few seconds. However, after few seconds, the growth rate does not alter significantly comparing to the absence of nanoparticles.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    7
    References
    0
    Citations
    NaN
    KQI
    []