Biodiversity and Function Analyses of BIOLAK Activated Sludge Metagenome

2015 
The BIOLAK is a multi-stage activated sludge process, which has been successfully promoted worldwide. However, the biological community and function of the BIOLAK activated sludge ( the core component in the process) have not been reported so far. In this study, taking Lianyungang Dapu Industrial Zone WWTP as an example, a large-scale metagenomic data (428 588 high-quality DNA sequences) of the BIOLAK activated sludge were obtained by means of a new generation of high-throughput sequencing technology. Amazing biodiversity was revealed in the BIOLAK activated sludge, which included 47 phyla, 872 genera and 1351 species. There were 33 phyla identified in the Bacteria domain (289 933 sequences). Proteohacteria was the most abundant phylum (62.54%), followed by Bacteroidetes (11.29%), Nitrospirae ( 5. 65%) and Planctomycetes (4.79%), suggesting that these groups played a key role in the BIOLAK wastewater treatment system. Among the 748 bacterial genera, Nitrospira (5.60%) was the most prevalent genus, which was a key group in the nitrogen cycle. Followed by Gemmatimonas (2.45%), which was an important genus in the biological phosphorus removal process. In Archaea domain (1019 sequences), three phyla and 39 genera were detected. In Eukaryota domain (1055 sequences), 60 genera and 10 phyla were identified, among which Ciliophora was the largest phylum (257 sequences). Meanwhile, 448 viral sequences were detected in the BIOLAK sludge metagenome, which were dominated by bacteriophages. The proportions of nitrogen, aromatic compounds and phosphorus metabolism in the BIOLAK sludge were 2.50%, 2.28% and 1.56%, respectively, which were higher than those in the sludge of United States and Australia. Among four processes of nitrogen metabolism, denitrification-related genes were most abundant (80.81%), followed by ammonification (12.78%), nitrification,(4.38%) and nitrogen fixation (2.04%). In conclusion, the BIOLAK activated sludge had amazing biodiversity, meanwhile, functional genes involved in nitrogen, aromatic compounds and phosphorus metabolism were very abundant.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    3
    Citations
    NaN
    KQI
    []