Potential Dengue Virus-Triggered Apoptotic Pathway in Human Neuroblastoma Cells: Arachidonic Acid, Superoxide Anion, and NF-κB Are Sequentially Involved

2000 
Direct in vivo evidence for the susceptibility of human neuronal cells to dengue virus has not been reported. In this study, we demonstrated that type 2 dengue (DEN-2) virus infection induced extensive apoptosis in the human neuroblastoma cell line SK-N-SH. Phospholipase A2 (PLA2) was activated by DEN-2 infection, which led to the generation of arachidonic acid (AA). Inhibition of PLA2 activity by the PLA2 inhibitors, AACOCF3 and ONO-RS-082, diminished DEN-2 virus-induced apoptosis. In contrast, the cyclooxygenase inhibitors aspirin and indomethacin, thought to increase AA accumulation by blocking AA catabolism, enhanced apoptosis. Exogenous AA induced apoptosis in a dose-dependent manner. Superoxide anion, which is thought to be generated through the AA-activated NADPH oxidase, was increased after infection. Pretreatment with superoxide dismutase (SOD) protected cells against DEN-2 virus-induced apoptosis. Furthermore, generation of superoxide anion was blocked by AACOCF3. In addition, the transcription factors, NF-κB and c-Jun, were found to be activated after DEN-2 virus infection. However, pretreatment of cells with oligodeoxynucleotides containing NF-κB, but not c-Jun, binding sites (transcription factor decoy) strongly prevented dengue virus-induced apoptosis. The finding that AACOCF3 and SOD significantly block activation of NF-κB suggests that this activation is derived from the AA-superoxide anion pathway. Our results indicate that DEN-2 virus infection of human neuroblastoma cells triggers an apoptotic pathway through PLA2 activation to superoxide anion generation and subsequently to NF-κB activation. This apoptotic effect can be either directly derived from the action of AA and superoxide anion on mitochondria or indirectly derived from the products of apoptosis-related genes activated by NF-κB.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    93
    References
    116
    Citations
    NaN
    KQI
    []