Organic Field-Effect Transistor-Based Biosensors with Enhanced Sensitivity and Reliability under Illumination for Carcinoembryonic Antigen Bioassay.

2021 
Achieving biosensors of high sensitivity and reliability is extremely significant for early diagnosis and treatment of tumor diseases. Herein, a novel organic field-effect transistor (OFET)-based biosensor was developed and applied for carcinoembryonic antigen (CEA) bioassay. This OFET-based biosensor can respond sensitively to the antigen-antibody immune-recognition reaction under illumination and darkness, respectively, thereby generating electrical signal changes of source-drain current (IDS) and threshold voltage (Vth). The OFET-based biosensor exhibits detection limits for CEA detection of 0.5 and 0.2 pM, respectively, using IDS and Vth as the response signals under darkness. When a specific intensity of light is applied, light will influence the charge-carrier transport process in the conductive channel, thus causing biosignals to turn into higher electrical signal changes of photocurrent and threshold voltage under illumination. Compared with the detection results in the dark, the biosensor exhibits higher sensitivity for CEA detection under illumination with detection limits of 13.5 and 16.9 fM. Also, multisignal outputs effectively improve the reliability of the biosensor for CEA detection. Consequently, with powerful detection functions, this OFET-based biosensor is expected to become a high-performance biosensing platform for the detection of various biological substances in the future.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    0
    Citations
    NaN
    KQI
    []