Mobile cart-based detection of infrared backscatter from hazardous substances at proximal distances

2021 
We present a cart-based system based on infrared backscatter imaging spectroscopy (IBIS) for detecting and analyzing trace amounts of hazardous materials as particles on solid substrates. A system comprising four quantum cascade lasers rapidly scans through the mid-LWIR (6 μm – 11 μm) wavelength range to illuminate samples containing target analytes. The infrared backscatter signal is collected as a series of images to form a hyperspectral image cube. Each image is collected at a specified excitation wavelength using a liquid nitrogen cooled MCT focal plane array. The experimental results of this cart-based infrared illumination and backscatter detection are presented. Results compare imaged spectra over a range of different wavelength tuning speeds and different combinations of substrates and analytes. Camera frames are collected while the laser is sweeping through its wavelength range. A single complete analysis can be completed in less than 1 second. In every camera frame, each pixel of the 128x128 pixel camera array produces an individual intensity. These frames are then binned and assigned a discrete wavelength in steps, typically 0.01 μm, to produce a spectrum over 6 – 11 μm for each camera pixel. Target samples are prepared by sieving particles or by a dry transfer technique, to mimic particle size distributions associated with real world threats at trace levels, for explosives and illicit drugs on relevant substrates.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []