[Regular Paper] Inference of Genetic Networks Using Random Forests: Use of Different Weights for Time-Series and Static Gene Expression Data

2018 
Genetic network inference methods using random forests have shown promise. Some of the random-forest-based inference methods have an ability to analyze both time-series and static gene expression data. We think however that, as the gene expression levels at two adjacent measurements of a time-series data are often similar to each other, the gene expression levels at each measurement in the time-series data are less informative than those in the static data. On the basis of this idea, we proposed a new inference method that relies more on static gene expression data than time-series ones. Through the numerical experiments, we showed that the quality of the inferred genetic network is slightly improved by giving greater importance to static data than time-series ones. Although we develop the new method by modifying the random-forest-based inference method proposed by the authors, we could introduce the idea in this study into any inference method that is capable of analyzing both time-series and static gene expression data.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    4
    References
    1
    Citations
    NaN
    KQI
    []