자기조직화지도 신경망 모형과 Tier 모형을 이용한 아시아컨테이너항만의 클러스터링측정 및 추세분석에 관한 실증적 연구

2014 
The purpose of this paper is to show the clustering trend and to choose the clustering ports for 3 Korean ports(Busan, Incheon and Gwangyang Ports) by using the self organizing maps based on neural network(SOM) and Tier models for 38 Asian ports during 11 years(2001-2011) with 4 input variables(birth length, depth, total area, and number of crane) and 1 output variable(container TEU). The main empirical results of this paper are as follows. First, clustering results by using SOM show that 3 Korean ports[Busan(26.5%), Incheon(13.05%), and Gwangyang(22.95%) each]can increase the efficiency. Second, according to Tier model, Busan(Hongkong, Sanghai, Manila, and Singapore), Incheon(Aden, Ningbo, Dabao, and Bangkog), and Gwangyang(Aden, Ningbo, Bangkog, Hipa, Dubai, and Guangzhou) should be clustered with those ports in parentheses. Third, when both SOM and Tier models are mixed, ① efficiency improvement of Busan Port is greater than those of Incheon and Gwangyang ports. ② Incheon port has shown the slow improvement during 2001-2007, but after 2008, improvement speed was high. ③ improvement level of Gwangyang port was high during 2001-2003, but after 2004, improvement level was constantly decreased. The policy implication of this paper is that Korean port policy planner should introduce the SOM, and Tier models with the mixed two models when clustering among the Asian ports for enhancing the efficiency of inputs and outputs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []