Manipulation of Self-Assembled Nanostructure Dimensions in Molecular Janus Particles
2016
The ability to manipulate self-assembly of molecular building blocks is the key to achieving precise “bottom-up” fabrications of desired nanostructures. Herein, we report a rational design, facile synthesis, and self-assembly of a series of molecular Janus particles (MJPs) constructed by chemically linking α-Keggin-type polyoxometalate (POM) nanoclusters with functionalized polyhedral oligomeric silsesquioxane (POSS) cages. Diverse nanostructures were obtained by tuning secondary interactions among the building blocks and solvents via three factors: solvent polarity, surface functionality of POSS derivatives, and molecular topology. Self-assembled morphologies of KPOM-BPOSS (B denotes isobutyl groups) were found dependent on solvent polarity. In acetonitrile/water mixtures with a high dielectric constant, colloidal nanoparticles with nanophase-separated internal lamellar structures quickly formed, which gradually turned into one-dimensional nanobelt crystals upon aging, while stacked crystalline lamellae ...
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
73
References
59
Citations
NaN
KQI