Cost minimization during simulated evolution of paired neural networks leads to asymmetries and specialization

2003 
Motivated by specialization (lateralization) that occurs in corresponding left and right regions of the cerebral cortex, several past computational models have studied conditions under which functional specialization can arise during learning due to underlying asymmetries in paired neural networks. However, these past studies have not addressed the basic issue of how such underlying asymmetries arise in the first place. As an initial step in addressing this issue, we investigated the hypothesis that underlying asymmetries will appear in paired neural networks during a simulated evolutionary process when fitness is based not only on maximizing performance, but also on minimizing various 'costs' such as energy consumption, neural connection weights, and response times. Simulated evolution under these conditions consistently produced networks with left-right asymmetries in region size, excitability and plasticity. These underlying asymmetries were often synergistic, leading to subsequent functional lateralization during network training. While our computational models are too simple for these results to be directly extrapolated to real nervous systems, they provide support for the hypothesis that brain asymmetries and lateralization in biological nervous systems may be a consequence of cost minimization present during evolution, and are the first computational demonstration of emergent population lateralization.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    11
    Citations
    NaN
    KQI
    []