Two-photon photocurrent in InGaN/GaN nanowire intermediate band solar cells
2020
Intermediate band solar cells hold the promise of ultrahigh power conversion efficiencies using a single semiconductor junction. Many current implementations use materials with bandgaps too small to achieve maximum efficiency or use cost-prohibitive substrates. Here we demonstrate a material system for intermediate band solar cells using InGaN/GaN quantum-dot-in-nanowire heterostructures grown directly on silicon to provide a lower cost, large-bandgap intermediate band solar cell platform. We demonstrate sequential two-photon current generation with sub-bandgap photons, the hallmark of intermediate band solar cell operation, through vertically stacked quantum dots in the nanowires. Near-infrared light biasing with an 850 nm laser intensity up to 200 W/cm2 increases the photocurrent above and below the bandgap by up to 19% at 78 K, and 44% at room temperature. The nanostructured III-nitride strategy provides a route towards realistic room temperature intermediate band solar cells while leveraging the cost benefits of silicon substrates. Intermediate band solar cells have the ability to reach efficiencies similar to multijunction cells using a single semiconductor junction. Here, enhanced two-photon carrier generation is demonstrated on a silicon substrate in an InGaN/GaN quantum dot-in-nanowire heterostructure intermediate band solar cell.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
28
References
10
Citations
NaN
KQI