An Effect Analysis of Cooling Water Direction Towards Condensate Oil From Scrap Tires

2021 
The application of pyrolysis for the thermal decomposition of tire waste can be taken as the ideal concept to reduce and recycle tire waste. The product of the process can produce condensate oil, a typical oil that is close to crude oil properties. The critical aspect of the pyrolysis process is the design of the reactor, particularly for the condenser where the rate of heat transfer contributes to the overall quality and quantity of the produced condensate oil. This study focused on the effect of water flow direction on the condensation process of pyrolysis gas. The quantity and quality of the produced oil are examined to observe the effect of the condensation process. Two different water flow directions are tested in the process, namely, counter flow and parallel flow direction. The effect of water flow direction in the condenser clearly affects the pyrolysis process to produce the condensate oil. Based on the production quantity, the counter flow condenser is able to produce 355 ml of condensate oil while the parallel flow one merely 290 ml. Based on the quality of the produced condensate oil, the counter flow condenser is generally better than the parallel flow one where the density, flash point and viscosity are close to crude oil properties. The rate of heat transfer from the condenser to the pyrolysis gas is the main factor that contributes to the quality and quantity of the condensate oil. The average heat transfer for the counter and parallel flow is 2,728 W and 1,865 W, respectively. It can be said that using the counter flow condenser for the pyrolysis reactor can improve the quality and quantity of the condensate oil.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []