Adsorptive Removal of Low-Concentration Cr(VI) in Aqueous Solution by Mg-Al Layered Double Oxides.

2021 
To explore the adsorption removal mechanism of Mg-Al layered double oxides (LDOs) for low-concentration (≤ 5 mg L-1) Cr(VI), the adsorption kinetics, adsorption isotherms and its influencing factors were studied by batch experiments. Cr(VI) adsorption reached equilibrium after 6, 11 and 15 h for initial Cr(VI) concentrations of 1, 3 and 5 mg L-1, respectively, and the final adsorption efficiency exceeded 99.0%. The residual concentration of Cr(VI) was within the allowable limit of Drinking Water Quality Standard of World Health Organization (0.05 mg L-1). The experimental data fitted the pseudo-second-order and Freundlich models well. Mg-Al LDOs showed effective adsorption efficiency in the range of pH 3-9, and the adsorption efficiency was influenced by anions competition (HPO42- > SO42- > CO32- > NO3- > Cl-). The analyses of XRD, SEM and FT-IR spectra suggested adsorption Cr(VI) on Mg-Al LDOs was caused by capturing dichromate ions to reconstruct its structure. Therefore, Mg-Al LDOs is promising adsorbents for the low-concentration Cr(VI) treatment in polluted surface water and groundwater.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    2
    Citations
    NaN
    KQI
    []