Intercalation of 3-Phenyl-1-proponal into OTS SAMs on Silica Nanoasperities to Create Self-Repairing Interfaces for MEMS Lubrication†

2010 
Self-assembled monolayers (SAMs) have been widely studied as potential lubricants for microelectromechanical system (MEMS) devices. However, these single-layer films have nominally been found to be insufficient for mitigating wear in sliding contacts because of their rapid breakdown under the high pressures found within the nanoasperity junctions at such interfaces. As such, there is a critical need to explore approaches beyond simple, single-component SAMs toward films that introduce additional lubricant molecules into the system. Because alcohol vapors have previously been shown to reduce wear in MEMS devices, here we have investigated a mixed monolayer consisting of an octadecyltrichlorosilane (OTS) SAM infused with 3-phenyl-1-propanol (3P1P), assembled on silica nanoparticle films. A combination of atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), thermal gravimetric analysis (TGA), and FTIR spectroscopy was employed to investigate the structural and frictional properties of the m...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    69
    References
    16
    Citations
    NaN
    KQI
    []