Flexible heat shields deployed by centrifugal force

2018 
Abstract Atmospheric entry aerodynamic decelerators which also provide thermal protection do not scale well for smaller payloads (e.g. CubeSat) or where the planets atmosphere is significantly less dense than the Earth's (e.g. Mars entry). Both cases require heat shields larger than can be accommodated either within the launch vehicle fairing, or within acceptable payload volumes, so deployable shields are required. Unlike previous designs proposed to fulfil this requirement like inflatable structures or deployable solid mechanisms, the presented research addresses this by utilising inertial force, or specifically, centrifugal force generated from autorotation to deploy and stiffen a flexible heat shield. Structural dynamic analyses including the trajectory simulation on a CubeSat sized system has shown that the autorotation and deployment form a closed loop which reliably leads to an equilibrium of deployment, while the heat shield is near fully deployed at altitudes higher than 30 km with tolerable spin rate (
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    3
    Citations
    NaN
    KQI
    []