Trajectory modeling revealed a southwest-northeast migration corridor for fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae) emerging from the North China Plain.

2020 
The fall armyworm Spodoptera frugiperda, an invasive insect pest native to the Americas, has established populations throughout eastern China. The North China Plain-a key corn-producing area in East China with a unique topography-was invaded by fall armyworm in 2019 and is seriously threatened by this migratory pest. However, the spatiotemporal extent of the emigratory movements of fall armyworm from the North China Plain remains poorly understood. Using an air transport-based trajectory modeling approach that incorporates flight behavior, we simulated the potential nocturnal migration trajectories of fall armyworm from the North China Plain based on historical meteorological data from June to October of 2015-2019, and examined the night-time atmospheric conditions associated with their possible flights. The emigration patterns showed monthly variation in the main landing area and common migration direction. The displacement of newly emerged moths from the North China Plain was concentrated in the Northeast China Plain (including Liaoning, Jilin and Heilongjiang provinces) before late summer, after which they were most likely to undertake return flights to the south (especially into Hubei, Anhui and Hunan provinces). This southwest-northeast aerial migration corridor follows the topography of East China and is affected by the East Asian monsoon. These topographic-atmospheric conditions have resulted in the North China Plain becoming a key stopover for fall armyworm populations engaging in multi-generational long-distance migration across East China. These findings contribute to our knowledge of fall armyworm migration and will aid in the implementation of management and control strategies against this highly migratory agricultural pest. This article is protected by copyright. All rights reserved.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    5
    Citations
    NaN
    KQI
    []