Effect of fabric structure and polymer matrix on flexural strength, interlaminar shear stress, and energy dissipation of glass fiber-reinforced polymer composites:

2016 
We report the effect of glass fiber structure and the epoxy polymer system on the flexural strength, interlaminar shear stress (ILSS), and energy absorption properties of glass fiber-reinforced polymer (GFRP) composites. Four different GFRP composites were fabricated from two glass fiber textiles of different fabric count and strand density and two resin systems, a cycloaliphatic and a linear aliphatic system. These composites were fabricated using the vacuum-assisted resin transfer method. The flexural stress and ILSS data were obtained using a three-point bending test following ASTM 790-10 and ASTM D2344/D2344M standards. The GFRP composite sheet fabricated using a larger fabric count showed weak flexural strength as well as poor ILSS properties. However, it showed an average increase in energy dissipation of 95% and 7%, for resins SC780 and SC15, respectively, after five compression cycles over the measured range of compression strain. In comparison with the SC15 resin, the SC780 resin proved to have b...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    13
    References
    9
    Citations
    NaN
    KQI
    []