Effect of Mercerization/Alkali Surface Treatment of Natural Fibres and Their Utilization in Polymer Composites: Mechanical and Morphological Studies

2021 
Environmental pollution, such as air, water, and soil pollution, has become the most serious issue. Soil pollution is a major concern as it generally affects the lands and makes them non-fertile. The main cause of soil pollution is agro-waste. It may be possible to mitigate the agro-waste pollution by re-utilizing this agro-waste, namely natural fibres (NFs), by blending into polymer-based material to reinforce the polymer composite. However, there are pros and cons to this approach. Consequently, the polymer composite materials fabricated using NFs are inferior to those polymer composites that are reinforced by, e.g., carbon or glass fibres from the mechanical properties’ perspectives. The limitations of utilizing natural fibres in polymer matrix are their high moisture absorption, resulting in high swelling rate and degradation, inferior resistance to fire and chemical, and inferior mechanical properties. In particular, the NF polymer composites exhibit inferior interfacial adhesion between the fibre and the matrix, which, if improved, ultimately overcome all the listed limitations and improve the mechanical properties of the developed composites. To improve the interfacial adhesion leading to the enhancement of the mechanical properties, optimum chemical treatment such as Alkalization/Mercerization of the fibres have been explored. This article discusses the Mercerization/Alkali surface treatment method for NFs and its effects on the fibres regarding the Mercerization/Alkali surface treatment method for NFs and its effect on the fibres regarding their utilization in the polymer composites, the morphological features, and mechanical properties of composites.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    2
    Citations
    NaN
    KQI
    []