Absolute cooling rates of freely decaying fullerenes.

2009 
The cooling rates of C-60(-) have been measured in an electrostatic storage ring between several hundred mu s and several tens of ms with one-photon laser excitation. The absolute energy scale is established by the photon energy, and the cooling time interval is derived from the nonexponential decay of the ensemble of hot molecules. The energy decreases due to the combined action of depletion and thermal emission of IR photons with a total energy loss rate that varies inversely proportional to time, 0.9 eV/t. The radiative component decreases from a few hundred eV/s at submillisecond time scales to several tens of eV/s at 20 ms and confirms that the crossover from depletion to predominantly radiative cooling occurs around 5 ms. The method is applicable to any large molecule or cluster which decays spontaneously, irrespective of the specific decay channel. (Less)
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    11
    Citations
    NaN
    KQI
    []