Acamprosate, MK-801, and Ifenprodil Inhibit Neurotoxicity and Calcium Entry Induced by Ethanol Withdrawal in Organotypic Slice Cultures From Neonatal Rat Hippocampus

2002 
BACKGROUND: The antirelapse drug acamprosate has previously been reported to inhibit activating effects of polyamines on -methyl-D-aspartic acid receptor (NMDAR) function. Because increased synthesis of polyamines has been suggested as a mechanism for potentiation of NMDAR function during ethanol withdrawal, we evaluated the effects of acamprosate, MK-801, and ifenprodil in a cell culture model of ethanol withdrawal-induced neurotoxicity. METHODS: Organotypic hippocampal cultures from 8-day-old neonatal rats were maintained in vitro for 23 days before experimental use. The ethanol withdrawal model consisted of exposing cultures to ethanol (70-100 mM) for 4 days before being "withdrawn" into Calcium-Locke's buffer for 1 hr and then into minimal medium for 23 hr. Uptake of (45)CaCl(2) and propidium iodide by damaged cells was assessed 1 hr and 24 hr after the start of ethanol withdrawal, respectively. Additional studies examined effects of exposure to NMDA (50 microM) or spermidine (100 microM) on withdrawal-induced hippocampal damage. Last, these studies examined the ability of the sodium salt of acamprosate (Na-acamprosate, 200 microM), ifenprodil (50 microM), or MK-801 (30 microM) to inhibit neurotoxicity and (45)Ca(2+) entry produced by these insults. RESULTS: Ethanol withdrawal was associated with significantly greater toxicity and (45)Ca(2+) entry, relative to controls. Exposure to spermidine and NMDA during ethanol withdrawal further increased neurotoxicity and (45)Ca(2+) entry. Acamprosate, ifenprodil, and MK-801 almost completely prevented ethanol withdrawal-induced toxicity and (45)Ca(2+) entry. Acamprosate also reduced spermidine-induced neurotoxicity during ethanol withdrawal but was ineffective against NMDA-induced toxicity or (45)Ca(2+) entry at this time. CONCLUSIONS: The results support the contention that acamprosate, like ifenprodil, interacts with polyamines and that these compounds may be effective in reducing consequences of ethanol withdrawal. NMDAR activation is also strongly implicated in ethanol withdrawal neurotoxicity, but whether acamprosate causes any of these effects in this preparation directly via the NMDAR remains uncertain.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    46
    Citations
    NaN
    KQI
    []