Rapamycin attenuates BAFF‐extended proliferation and survival via disruption of mTORC1/2 signaling in normal and neoplastic B‐lymphoid cells

2018 
B cell activating factor from the TNF family (BAFF) stimulates B-cell proliferation and survival, but excessive BAFF promotes the development of aggressive B cells leading to malignant and autoimmune diseases. Recently, we have reported that rapamycin, a macrocyclic lactone, attenuates human soluble BAFF (hsBAFF)-stimulated B-cell proliferation/survival by suppressing mTOR-mediated PP2A-Erk1/2 signaling pathway. Here, we show that the inhibitory effect of rapamycin on hsBAFF-promoted B cell proliferation/survival is also related to blocking hsBAFF-stimulated phosphorylation of Akt, S6K1 and 4E-BP1, as well as expression of survivin in normal and B-lymphoid (Raji and Daudi) cells. It appeared that both mTORC1 and mTORC2 were involved in the inhibitory activity of rapamycin, as silencing raptor or rictor enhanced rapamycin’s suppression of hsBAFF-induced survivin expression and proliferation/viability in B cells. Also, PP242, an mTORC1/2 kinase inhibitor, repressed survivin expression and cell proliferation/viability more potently than rapamycin (mTORC1 inhibitor) in B cells in response to hsBAFF. Of interest, ectopic expression of constitutively active Akt (myr-Akt) or constitutively active S6K1 (S6K1-ca), or downregulation of 4E-BP1 conferred resistance to rapamycin’s attenuation of hsBAFF-induced survivin expression and B-cell proliferation/viability, whereas overexpression of dominant negative Akt (dn-Akt) or constitutively hypophosphorylated 4E-BP1 (4EBP1-5A), or downregulation of S6K1, or co-treatment with Akt inhibitor potentiated the inhibitory effects of rapamycin. The findings indicate that rapamycin attenuates excessive hsBAFF-induced cell proliferation/survival via blocking mTORC1/2 signaling in normal and neoplastic B-lymphoid cells. Our data underscore that rapamycin may be a potential agent for preventing excessive BAFF-evoked aggressive B-cell malignancies and autoimmune diseases.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    59
    References
    15
    Citations
    NaN
    KQI
    []