A 12-bit 10-MS/s SAR ADC with a weighted sampling time technique applied to C-DAC
2021
This paper presents a low power 12-bit 10-MS/s successive approximation register (SAR) analog-to-digital convert (ADC) for bio-signal signal processing in wearable sensor systems. A weighted sampling time technique applied to a capacitor digital to analog converter (C-DAC) is employed to reduce the power consumption of the conventional SAR ADC with minimum performance sacrifice. The proposed technique helped reduce its energy consumed by MSB, MSB-1, MSB-6, and MSB-7 capacitors by more than 40% compared with that of the conventional C-DAC. Another technique, a voltage scaling method is also employed to lower the power supply voltage from 1.2 to 0.6 V for all the digital logics except the output registers, such that it results in a power reduction of 70%. The proposed ADC is implemented with the standard CMOS 65 nm 1-poly 6-metal n-well process. The ADC achieves DNL/INL of ± 1.2LSB/ ± 1.5LSB, ENOB of 10.3-b, power consumption of 31.2 μW, and Walden FoM of 2.7fJ/step.
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
9
References
0
Citations
NaN
KQI