Systems-informed genome mining for electroautotrophic microbial production

2020 
Microbial electrosynthesis (MES) systems can store renewable energy and CO2 in many-carbon molecules inaccessible to abiotic electrochemistry. Here, we develop a multiphysics model to investigate the fundamental and practical limits of MES enabled by direct electron uptake and we identify organisms in which this biotechnological CO2-fixation strategy can be realized. Systematic model comparisons of microbial respiration and carbon fixation strategies revealed that, under aerobic conditions, the CO2 fixation rate is limited to 50 mol/cm2/hr for microbes using the reductive tricarboxylic acid cycle. Phylogenetic analysis, validated by recapitulating experimental demonstrations of electroautotrophy, uncovered multiple probable electroautotrophic organisms and a significant number of genetically tractable strains that require heterologous expression of <5 proteins to gain electroautotrophic function. The model and analysis presented here will guide microbial engineering and reactor design for practical MES systems.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    92
    References
    2
    Citations
    NaN
    KQI
    []