Расчётное исследование эффективности работы демпфера сухого трения конического зубчатого колеса тарельчатого типа при резонансных колебаниях по различным формам

2015 
Different designs of a Coulomb friction damper used to decrease the amplitude of bevel gear resonance oscillations and existing approaches to the modeling of variable-structure dry-friction systems are discussed in the paper. A parametric 3-d finite-element model of contact “bevel gear - plate damper” interaction has been developed. Natural frequencies of the system have been determined for different contact parameters. A set of amplitude-frequency curves of the “damper-wheel” system under consideration has been constructed for different values of damper pre-pressure. The work of the constraining force for the oscillation period has been calculated. By estimating the period-average number of sliding elements basic operating in the relative slip mode the principal modes of a Coulomb friction damper operation – with continuous and instant relative stops – are studied. The influence of the damper pre-pressure value on the relative amplitude of different forms of resonance oscillations is analyzed. A conclusion has been made on the basis of the calculation results that applying a Coulomb friction damper is an efficient way of reducing the amplitude of resonance oscillations of the bevel gear.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []