Application of a BIlinear Rotation Decoupling (BIRD) filter in combination with J-difference editing for indirect 13 C measurements in the human liver.

2020 
PURPOSE Recently, we introduced a quantum coherence based method (ge-HSQC) for indirect 13 C-MRS in the liver to track 13 C-labeled lipids into the hepatic lipid pool in vivo. This approach is more robust in case of respiratory motion, however, inherently leads to a signal loss of 50% when compared with a conventional J-difference editing technique (JDE). Here, we intend to improve the robustness of a regular JDE (STEAM-ACED) with the use of a BIlinear Rotation Decoupling (BIRD) filter to achieve 100% higher signal gain when compared with ge-HSQC. METHODS To determine the efficiency of the BIRD filter 1 H-[13 C] lipid spectra were acquired on 3T from a peanut oil phantom, with three different MR sequences: ge-HSQC, STEAM-ACED, and the BIRD filter together with STEAM-ACED (BIRD-STEAM-ACED). Finally, our proposed method is tested in vivo in five healthy volunteers with varying liver fat content. In these subjects we quantified the 1 H-[13 C]-signal from the hepatic lipid pool and determined 13 C enrichment, which is expected to be 1.1% according to the natural abundance of 13 C. RESULTS The application of the proposed BIRD filter reduces the subtraction artifact of 1 H-[12 C] lipid signal efficiently in JDE experiments, which leads to a signal gain of 100% of 1 H-[13 C]-lipid signals when compared with the ge-HSQC. Phase distortions in vivo were minimal with the use of BIRD compared with STEAM-ACED, which enabled us to robustly quantify the 13 C-enrichment in all five subjects. CONCLUSION The BIRD-STEAM-ACED sequence is an efficient and promising tool for 13 C-tracking experiments in the human liver in vivo.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    12
    References
    2
    Citations
    NaN
    KQI
    []