TNF‐α promotes osteoclastogenesis through JNK signaling‐dependent induction of Semaphorin3D expression in estrogen‐deficiency induced osteoporosis

2017 
Tumor necrosis factor α (TNF-α)-induced osteoclast formation have been demonstrated to play an important role in the pathogenesis of estrogen deficiency-mediated bone loss, but the exact mechanisms by which TNF-α enhanced osteoclast differentiation were not fully elucidated. The class III semaphorins members were critical to regulate bone homeostasis. Here, we identified a novel mechanism whereby TNF-α increasing Semaphorin3D expression contributes to estrogen deficiency-induced osteoporosis. In this study, we found that Semaphorin3D expression was upregulated by TNF-α during the process of RANKL-induced osteoclast differentiation. Inhibition of Semaphorin3D in pre-osteoclasts could attenuate the stimulatory effects of TNF-α on osteoclast proliferation and differentiation. Mechanistically, blocking of the Jun N-terminal kinase (JNK) signaling markedly rescued TNF-α-induced Semaphorin3D expression, suggesting that JNK signaling was involved in the regulation of Semaphorin3D expression by TNF-α. In addition, silencing of Semaphorin3D in vivo could alleviate estrogen deficiency-induced osteoporosis. Our results revealed a novel function for Semaphorin3D and suggested that increased Semaphorin3D may contribute to enhanced bone loss by increased TNF-α in estrogen deficiency-induced osteoporosis. Thus, Semaphorin3D may provide a potential therapeutic target for the treatment of estrogen-deficiency induced osteoporosis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    14
    Citations
    NaN
    KQI
    []