Flue gas CO2 capture via electrochemically mediated amine regeneration: System design and performance

2019 
Abstract The electrochemically-mediated amine regeneration (EMAR) process uses electrons to modulate amine capacity to achieve CO2 separation from flue gas as an alternative to the traditional thermal regeneration process for CO2 capture. The EMAR separation scheme is validated in a batch system designed to evaluate efficiency losses. Current and voltage responses of the electrochemical process were analyzed in a flow system operated continuously for up to 50 h. An isothermal EMAR system can achieve separation efficiencies above 80% from a 15% CO2 feed, which is representative of the CO2 composition in a flue gas. This bench scale continuous system can operate at 40–80 kJe/molCO2 with an amine regeneration of between 0.12 and 0.62 molCO2/molamine. The ability to separate CO2 at high electron utilization and moderate electrical energy consumption will prompt future research into optimization of the electrochemical separation unit to obtain long-term and stable operations for flue gas scrubbing.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    24
    Citations
    NaN
    KQI
    []