Personal exposure to different levels of benzene and its relationships to the urinary metabolites S-phenylmercapturic acid and trans, trans-muconic acid

2002 
This report is part of an extensive study to verify the validity, specificity, and sensitivity of biomarkers of benzene at low exposures and assess their relationships with personal exposure and genetic damage. The study population was selected from benzene-exposed workers in Tianjin, China, based on historical exposure data. The recruitment of 130 exposed workers from glue-making or shoe-making plants and 51 unexposed subjects from nearby food factories was based on personal exposure measurements conducted for 3-4 weeks prior to collection of biological samples. In this report we investigated correlation of urinary benzene metabolites, S-phenylmercapturic acid (S-PMA) and trans,trans-muconic acid (t,t-MA) with personal exposure levels on the day of urine collection and studied the effect of dose on the biotransformation of benzene to these key metabolites. Urinary S-PMA and t,t-MA were determined simultaneously by liquid chromatography-tandem mass spectrometry analyses. Both S-PMA and t,t-MA, but specifically the former, correlated well with personal benzene exposure over a broad range of exposure (0.06-122 ppm). There was good correlation in the subgroup that had been exposed to < 1 ppm benzene with both metabolites (P-trend <0.0001 for S-PMA and 0.006 for t,t-MA). Furthermore, the levels of S-PMA were significantly higher in the subgroup exposed to <0.25 ppm than that in unexposed subjects (n = 17; P=0.001). There is inter-individual variation in the rate of conversion of benzene into urinary metabolites. The percentage of biotransformation of benzene to urinary S-PMA ranged from 0.005 to 0.3% and that to urinary t,t-MA ranged from 0.6 to ∼20%. The percentage of benzene biotransformed into S-PMA and t,t-MA decreased with increasing concentration of benzene, especially conversion of benzene into t,t-MA. It appears that women excreted more metabolites than men for the same levels of benzene exposures. Our data suggest that S-PMA is superior to t,t-MA as a biomarker for low levels of benzene exposure.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []