Dynamic behavior of smart microelectromechanical systems in industrial applications

2018 
Abstract Many of the microelectromechanical systems (MEMS) industrial applications require vibrating components that operate to a high-quality factor and small energy dissipation during oscillations. To improve the reliability design of MEMS resonators, the effect of operating conditions on the dynamical response of vibrating components has to be accurately determined. As a function of the operating conditions, the dynamical response and the loss of energy in vibrating MEMS components are influenced by the damping of the surrounding medium and depend on the intrinsic effects of mechanical structure. To differentiate between the extrinsic damping and the intrinsic effects, experiments have to be performed both in ambient conditions and in a vacuum. In this chapter, some analytical models accompanied by experimental tests are presented to estimate the dynamical response and the loss of energy on samples fabricated from polysilicon with different geometrical configurations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []