Photoelectrochemical sensing of dopamine using gold-TiO2 nanocomposites and visible-light illumination

2019 
A photoelectrochemical (PEC) method was developed for the determination of dopamine. It is making use of a composite prepared from gold nanoparticles and TiO2 (type P25) and placed on a fluorine-doped tin oxide (FTO) electrode. The composites are used for photoelectrical detection with improved electron transfer efficiency for photoproduction and with improved photoelectrical conversion efficiency. This is due to the excellent electrical conductivity and surface plasmon resonance absorption by gold nanoparticles, and also by the photocatalytic effect of TiO2. Dopamine binds easily to the surface of the composites and acts as an electron donor. This electrode gives a strongly enhanced photocurrent which increases linearly in the 0.1 to 100 μM dopamine concentration range and has a 23 nM detection limit (at S/N = 3). The electrode was operated over 15 cycles of light-on and light-off states every 20 s under visible-light illumination, and the sensor indicates good stability. In addition, it is selective over several possible interferents including uric acid, L-cysteine, glutathione, ascorbic acid and glucose.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    14
    Citations
    NaN
    KQI
    []