Characterization and modeling of edge direct tunneling (EDT) leakage in ultrathin gate oxide MOSFETs

2001 
This paper examines the edge direct tunneling (EDT) of electron from n/sup +/ polysilicon to underlying n-type drain extension in off-state n-channel MOSFETs having ultrathin gate oxide thicknesses (1.4-2.4 nm). It is found that for thinner oxide thicknesses, electron EDT is more pronounced over the conventional gate-induced-drain-leakage (GIDL), bulk band-to-band tunneling (BTBT) and gate-to-substrate tunneling, and as a result, the induced gate and drain leakage is better measured per unit gate width. A physical model is for the first time derived for the oxide field E/sub OX/ at the gate edge by accounting for electron subband in the quantized accumulation polysilicon surface. This model relates E/sub OX/ to the gate-to-drain voltage, oxide thickness, and doping concentration of drain extension. Once fox is known, an existing DT model readily reproduces EDT I-V consistently and the tunneling path size extracted falls adequately within the gate-to-drain overlap region. The ultimate oxide thickness limit due to EDT is projected as well.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    51
    Citations
    NaN
    KQI
    []