Cu(II) ion loading in silk fibroin scaffolds with silk I structure.

2020 
Abstract Metal ions play important roles in the diverse biochemical reactions associated with many cell signalling pathways. The modification of biomaterials with metal ions may offer a promising approach to stimulate cellular activity for improving tissue regeneration. Here, copper ion loading as a potential therapeutic agent in silk fibroin (SF) scaffolds was investigated. Freezing-annealing was used to induce silk I crystallization for forming water-insoluble SF scaffolds. Cu(II) ions were entrapped into SF scaffolds with different ratios by forming silk I crystal networks when copper chloride dihydrate was less than 5.0 wt%, producing water-stable materials. Moreover, it was found that copper ion chelation further enhanced SF stability when a low amount copper chloride was loaded. Increasing copper chloride content weakened silk I crystallization and Cu(II) ion chelation, rendering SF scaffolds unstable in water. Above 5.0 wt% copper chloride dihydrate, silk I crystallization was prevented. Finally, silk I scaffold with 1.5 wt% copper chloride dihydrate showed the strongest water-stability and highest loading efficiency. The results provide valuable data for understanding the effect of metal ions in freezing-induced SF crystallization, and also offer options for preparing novel Cu(II)-functionalized SF scaffolds.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    9
    Citations
    NaN
    KQI
    []