Measurements of turbulent mixing due to Kelvin–Helmholtz instability in high-energy-density plasmas

2013 
Abstract Kelvin–Helmholtz (KH) turbulent mixing measurements were performed in experiments on the OMEGA Laser Facility [T.R. Boehly et al., Opt. Commun. 133 (1997) 495]. In these experiments, laser-driven shock waves propagated through low-density plastic foam placed on top of a higher-density plastic foil. Behind the shock front, lower-density foam plasma flowed over the higher-density plastic plasma. The interface between the foam and plastic was KH unstable. The experiments were performed with pre-imposed, sinusoidal 2D perturbations, and broadband 3D perturbations due to surface roughness at the interface between the plastic and foam. KH instability growth was measured using X-ray, point-projection radiography. The mixing layer caused by the KH instability with layer width up to ∼100 μm was observed at a location ∼1 mm behind the shock front. The measured mixing layer width was in good agreement with simulations using a K – L turbulent mixing model in the two-dimensional ARES hydrodynamics code. In the definition of the K – L model K stands for the specific turbulent kinetic ( K ) energy, and L for the scale length ( L ) of the turbulence.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    14
    Citations
    NaN
    KQI
    []