Exploring the North‐South asymmetry in a Babcock‐Leighton dynamo

2013 
We present here a Babcock-Leighton, kinematic flux-transport solar dynamo model, based on an earlier model (Dikpati & Charbonneau 1999), operating in a full spherical shell of the convection zone, to investigate the properties of NorthSouth (N-S) asymmetry. We develop a C language code for this model in order to examine the N-S asymmetry. The main components of the model are a solar-like internal differential rotation profile, a depth-dependent diffusivity, and a Babcock-Leighton type poloidal source. Our purpose here is to study what kind of North-South asymmetry is produced in solar cycle patterns when the Babcock-Leighton poloidal source is asymmetric between North and South. We present our solutions in the form of model butterfly diagrams in which we plot the tachocline toroidal field and surface radial field, and compare them with observations. We find that the dynamos in the northern and southern hemispheres operate nearly independently – if the Babcock-Leighton source is much smaller in the southern hemisphere with respect to that in the northern hemisphere, the dynamo in the southern hemisphere gets weaker and weaker, but the dynamo in the northern hemisphere runs without being affected by the dynamo in the southern hemisphere. (© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    13
    References
    7
    Citations
    NaN
    KQI
    []