In vivo effect of quantified flavonoids-enriched extract of Scutellaria baicalensis root on acute lung injury induced by influenza A virus

2019 
Abstract Background Scutellaria baicalensis root is traditionally used for the treatment of common cold, fever and influenza. Flavonoids are the major chemical components of S. baicalensis root. Purpose To evaluate the therapeutic effects and action mechanism of flavonoids-enriched extract from S. baicalensis root (FESR) on acute lung injury (ALI) induced by influenza A virus (IAV) in mice. Methods The anti-influenza, anti-inflammatory and anti-complementary properties of FESR and the main flavonoids were evaluated in vitro . Mice were challenged intranasally with influenza virus H1N1 (A/FM/1/47) 2  h before treatment. FESR (50, 100 and 200  mg/kg) was administrated intragastrically. Baicalin (BG), the most abundant compound in FESR was given as reference control. Survival rates, life spans and lung indexes of IAV-infected mice were measured. Histopathological changes, virus levels, inflammatory markers and complement deposition in lungs were analyzed. Result Compared with the main compound BG, FESR and lower content aglycones (baicalein, oroxylin A, wogonin and chrysin) in FESR significantly inhibited H1N1 activity in virus-infected Madin-Darby canine kidney (MDCK) cells and markedly decreased nitric oxide (NO) production from lipopolysaccharide (LPS)-stimulated RAW264.7 cells. In vitro assays showed that FESR and BG had no anti-complementary activity whereas baicalein, oroxylin A, wogonin and chrysin exhibited obvious anti-complementary activity. Oral administration of FESR effectively protected the IAV-infected mice, increased the survival rate (FESR: 67%; BG: 33%), decreased the lung index (FESR: 0.90; BG: 1.00) and improved the lung morphology in comparing with BG group. FESR efficiently decreased lung virus titers, reduced haemagglutinin (HA) titers and inhibited neuraminidase (NA) activities in lungs of IAV-infected mice. FESR modulated the inflammatory responses by decreasing the levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and monocyte chemotactic protein-1 (MCP-1), and increasing the levels of interferon-γ (IFN-γ) and interleukin-10 (IL-10) in lung tissues. Although showing no anti-complementary activity in vitro , FESR obviously reduced complement deposition and decreased complement activation product level in the lung . Conclusion FESR has a great potential for the treatment of ALI induced by IAV and the underlying action mechanism might be closely associated with antiviral, anti-inflammatory and anti-complementary properties. Furthermore, FESR resulted in more potent therapeutic effect than BG in the treatment of IAV-induced ALI.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    42
    Citations
    NaN
    KQI
    []