Rotavirus NSP1 contributes to intestinal viral replication, pathogenesis, and transmission

2021 
Rotavirus (RV)-encoded non-structural protein 1 (NSP1), the product of gene segment 5, effectively antagonizes host interferon (IFN) signaling via multiple mechanisms. Recent studies with the newly established RV reverse genetics system indicate that NSP1 is not essential for the replication of simian RV SA11 strain in cell culture. However, the role of NSP1 in RV infection in vivo remains poorly characterized due to the limited replication of heterologous simian RVs in the suckling mouse model. Here, we used an optimized reverse genetics system and successfully recovered recombinant murine RVs with or without NSP1 expression. While the NSP1-null virus replicated comparably with the parental murine RV in IFN-deficient and IFN-competent cell lines in vitro, it was highly attenuated in 5-day-old wild-type suckling pups. In the absence of NSP1 expression, murine RV had significantly reduced replication in the ileum, systemic spread to mesenteric lymph nodes, fecal shedding, diarrhea occurrence, and transmission to uninoculated littermates. Of interest, the replication and pathogenesis defects of NSP1-null RV were only minimally rescued in Stat1knockout pups, suggesting that NSP1 facilitates RV replication in an IFN-independent manner. Our findings highlight a pivotal function of NSP1 during homologous RV infections in vivo and identify NSP1 as an ideal viral protein for targeted attenuation for future vaccine development.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    0
    Citations
    NaN
    KQI
    []