High Carrier Mobility in HgTe Quantum Dot Solids ImprovesMid-IR Photodetectors

2019 
Improved mid-infrared photoconductors based on colloidal HgTe quantum dots are realized using a hybrid ligand exchange and polar phase transfer. The doping can also be controlled n and p by adjusting the HgCl2 concentration in the ligand exchange process. We compare the photoconductive properties with the prior “solid-state ligand exchange” using ethanedithiol, and we find that the new process affords ~ 100-fold increase of the electron and hole mobility, ~100-fold increase in responsivity and ~10-fold increase in detectivity. These photodetector improvements are primarily attributed to the increase in mobility (μ) because the optical properties are mostly unchanged. We show that the specific detectivity (D*) of a photoconductive device is expected to scale as √μ. The application potential is further verified by long-term device stability.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    27
    Citations
    NaN
    KQI
    []