Automated classification of software issue reports using machine learning techniques: an empirical study

2017 
Software developers, testers and customers routinely submit issue reports to software issue trackers to record the problems they face in using a software. The issues are then directed to appropriate experts for analysis and fixing. However, submitters often misclassify an improvement request as a bug and vice versa. This costs valuable developer time. Hence automated classification of the submitted reports would be of great practical utility. In this paper, we analyze how machine learning techniques may be used to perform this task. We apply different classification algorithms, namely naive Bayes, linear discriminant analysis, k-nearest neighbors, support vector machine (SVM) with various kernels, decision tree and random forest separately to classify the reports from three open-source projects. We evaluate their performance in terms of F-measure, average accuracy and weighted average F-measure. Our experiments show that random forests perform best, while SVM with certain kernels also achieve high performance.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    29
    Citations
    NaN
    KQI
    []