Improved image quality with simultaneously reduced radiation exposure: Knowledge-based iterative model reconstruction algorithms for coronary CT angiography in a clinical setting

2017 
Abstract Background The aim of this study was to assess the potential for radiation dose reduction using knowledge-based iterative model reconstruction (K-IMR) algorithms in combination with ultra-low dose body mass index (BMI)-adapted protocols in coronary CT angiography (coronary CTA). Methods Forty patients undergoing clinically indicated coronary CTA were randomly assigned to two groups with BMI-adapted (I: 2 , II: 2 , III: 2 , IV: ≥30.0 kg/m 2 ) low dose (LD, I: 100kV p /75 mAs, II: 100kV p /100 mAs, III: 100kV p /150 mAs, IV: 120kV p /150 mAs, n = 20) or ultra-low dose (ULD, I: 100kV p /50 mAs, II: 100kV p /75 mAs, III: 100kV p /100 mAs, IV: 120kV p /100 mAs, n = 20) protocols. Prospectively-triggered coronary CTA was performed using a 256-MDCT with the lowest reasonable scan length. Images were generated with filtered back projection (FBP), a noise-reducing hybrid iterative algorithm (iD, levels 2/5) and K-IMR using cardiac routine (CR) and cardiac sharp settings, levels 1–3. Results Groups were comparable regarding anthropometric parameters, heart rate, and scan length. The use of ULD protocols resulted in a significant reduction of radiation exposure (0.7 (0.6–0.9) mSv vs. 1.1 (0.9–1.7) mSv; p  Conclusions The combination of K-IMR with BMI-adapted ULD protocols results in significant radiation dose savings while simultaneously improving image quality compared to LD protocols with FBP or hybrid iterative algorithms. Therefore, K-IMR allows for coronary CTA examinations with high diagnostic value and very low radiation exposure in clinical routine.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    9
    Citations
    NaN
    KQI
    []