Core-Shell ZnO@SnO2 Nanoparticles for Efficient Inorganic Perovskite Solar Cells

2019 
The ideal charge transport materials should exhibit a proper energy level, high carrier mobility, sufficient conductivity, and excel-lent charge extraction ability. Here, a novel electron transport material was designed and synthesized via using a simple and facile solvothermal method, which is composed by the core-shell ZnO@SnO2 nanoparticles. Thanks to the good match between energy level of SnO2 shell and high electron mobility of core ZnO nanoparticles, the PCE of inorganic perovskite solar cells has reached 14.35% (JSC: 16.45 mA cm-2, VOC: 1.11 V, FF: 79%), acting core-shell ZnO@SnO2 nanoparticles as the electron transfer layer. The core-shell ZnO@SnO2 nanoparticles size is 8.1 nm with the SnO2 shell thickness of 3.4 nm, and the electron mobility is seven times more than SnO2 nanoparticles. Meanwhile, the uniform core-shell ZnO@SnO2 nanoparticles is extremely favorable to the growth of inorganic perovskite films. These preliminary results strongly suggest the great potential of this novel electron tra...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    54
    Citations
    NaN
    KQI
    []