Physico-chemical factors influencing spore germination in cyanobacterium Fischerella muscicola

2018 
Spore (akinete) formation in the heterocystous and branched filamentous cyanobacterium Fischerella muscicola involves a significant increase in cell size and formation of several endospores in each of the cells. In present study, the physico‐chemical factors (pH, light sources, nutrient deficiency, nitrogen sources, carbon sources, and growth hormones) affecting the germination of spores of F. muscicola were examined. Increase in spore germination frequency was detected above pH 8 with maximum germination (46.04%) recorded at pH 9, whereas a significant decrease in germination was observed at pH 6 when compared to control (pH 7.6). Spore germination was not observed at pH 5. Among light sources germination frequency followed the following order, that is, red light (39.9%) > white light (33.8%) > yellow light (3.4%) > green light (1.3%) whereas germination did not take place in dark and blue light. Ammonium chloride (NH₄Cl) supported maximum (99.5%) germination frequency followed by calcium nitrate (Ca(NO₃)₂), potassium nitrate (KNO₃), and minimum germination was observed in urea. Nutrient (phosphorus, calcium, and magnesium) deficiency significantly enhanced the germination frequency with maximum increase in magnesium (Mg) deficient condition. Further, supplementation of carbon sources (glucose, fructose, and sodium acetate) and growth hormones (IAA and GA) also enhanced the germination frequency in this cyanobacterium. Therefore, it may be concluded that, those factors supporting higher germination frequency could be considered for successful production and use of this cyanobacterium in biofertilizer and other algal production technologies.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    0
    Citations
    NaN
    KQI
    []