Kinetics of the Topochemical Transformation of (PbSe)m(TiSe2)n(SnSe2)m(TiSe2)n to (Pb0.5Sn0.5Se)m(TiSe2)n
2019
Solid-state reaction kinetics on atomic length scales have not been heavily investigated due to the long times, high reaction temperatures, and small reaction volumes at interfaces in solid-state reactions. All of these conditions present significant analytical challenges in following reaction pathways. Herein we use in situ and ex situ X-ray diffraction, in situ X-ray reflectivity, high-angle annular dark field scanning transmission electron microscopy, and energy-dispersive X-ray spectroscopy to investigate the mechanistic pathways for the formation of a layered (Pb0.5Sn0.5Se)1+δ(TiSe2)m heterostructure, where m is the varying number of TiSe2 layers in the repeating structure. Thin film precursors were vapor deposited as elemental-modulated layers into an artificial superlattice with Pb and Sn in independent layers, creating a repeating unit with twice the size of the final structure. At low temperatures, the precursor undergoes only a crystallization event to form an intermediate (SnSe2)1+γ(TiSe2)m(PbS...
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
25
References
2
Citations
NaN
KQI