Advancement of capture immunoassay for real-time monitoring of hepatitis E virus-infected monkey

2020 
Abstract Rapid increasing outbreak of Hepatitis E virus (HEV) shows an urgent need of HEV detection. Instead of time consuming and expensive RT-qPCR, an efficient and quick monitoring system is in utmost demand which can be comparable with the RT-qPCR in term of reliability and detection limit. An advanced platform for immunoassay has been constructed in this study by a nanozyme that constitutes anti-HEV IgG antibody-conjugated gold nanoparticles (Ab-AuNPs) as core and in situ silver deposition on the surface of Ab-AuNPs as outer shell. The virus has been entrapped on the nanocomposites while the silver-shell has decomposed back to the silver ions (Ag+) by adding a tetramethylbenzidine (TMBZ) and hydrogen peroxide (H2O2) which indirectly quantifies the target virus concentration. Counterpart to only applying nanozyme, by incorporation of the enhanced effect of Ag shell on the AuNP-based nanozyme, the advance deposition has been confirmed to prove the signal amplification mechanism in the proposed immunoassay. Most importantly, the sensor performances have examined in clinically isolated HEV from HEV-infected monkey over a period of 45 days which successfully correlated with their standard RT-qPCR data, showing the applicability of this immunoassay as a real-time monitoring on the HEV infection. The in situ formation of AuNPs@Ag as nanozyme in this capture immunoassay leads to a promising advancement over the conventional methods and nanozyme-based immunoassay in real application which can be a good substitute of RT-qPCR in near future.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    7
    Citations
    NaN
    KQI
    []