Component, Microstructure and Simulation Calculation Study of Bimetallic Pt-Cu Alloys Towards Catalyzing Methanol Oxidation Reaction

2014 
Three Pt-Cu alloys (Pt0.3Cu0.7, Pt0.5Cu0.5, and Pt0.7Cu0.3) with different Cu contents were synthesized by adjusting the Pt/Cu precursor ratio, and their electrocatalytic activities for methanol oxidation reaction (MOR) were systematically studied. Component and microstructure study revealed that the relationship between the lattice parameters and Cu content followed the Vegard's law. Electrochemistry measurement showed that the MOR catalytic activity for Pt-Cu alloys displayed a dependency on the Cu content, and it decreased following: Pt0.3Cu0.7 > Pt0.5Cu0.5 > Pt0.7Cu0.3. Among the three Pt-Cu alloys, the Pt0.3Cu0.7 alloy exhibited the highest oxidation current density and best CO tolerance activity. Density functional theory simulation calculation, taking into account the shrinking of Pt-Cu alloy's lattice after Cu incorporation, confirmed that the adsorption energy of CO also displayed a dependency on the Cu content in Pt-Cu alloys, and it increased following: Pt0.3Cu0.7 < Pt0.5Cu0.5 < Pt0.7Cu0.3 < Pt, which could rationally explain the best CO tolerance ability for the Pt0.3Cu0.7.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    0
    Citations
    NaN
    KQI
    []