Effect of quinoid redox mediators during azo dye decolorization by anaerobic sludge: Considering the catalyzing mechanism and the methane production.
2020
Abstract The effects of quinoid compounds on azo dyes decolorization were studied. Compared with other quinones, menadione was the most effective at aiding azo dye decolorization. Sodium formate was a suitable carbon source for the anaerobic decolorization system. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis indicated that the microbial structure changed in response to varying carbon sources. Phylogenetic analysis showed that the anaerobic sludge was consisted mainly of nine genera. The mechanism studies showed that the biotransformation of menadione to its hydroquinone form was the rate-limiting step in the dye decolorization process. Moreover, study of the electron transfer mechanism of quinone-mediated reduction showed that azo dye decolorization is not a specific reaction. The NADH chain was involved in the decolorization process. The methane production test indicated that azo dyes had an inhibitory effect on methane production. However, supplementation with a redox mediator could recover the inhibited methanogenesis. High-throughput sequencing analysis revealed that the methanogenic archaeal community was altered in the anaerobic sludge with or without azo dyes and the redox mediator.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
38
References
5
Citations
NaN
KQI