Cross-linking of carbonic anhydrase and formate dehydrogenase based on amino acid specific recognition: Conversion of carbon dioxide to formic acid

2021 
Abstract Inspired by the cascades performed in vivo, the assembly of multiple enzymes in vitro has strongly moved into the focus of researchers in the field of biocatalysis. In this study, a new, mild and accurate enzyme cross-linking method is revealed. Microbial transglutaminase (MTG) acts as a "cross-linking medium" by identifying the amide group of the glutamine and the primary amine group of lysine in the artificial peptide tags specifically to form an iso-peptide bond. Here, carbonic anhydrase (CA) and formate dehydrogenase (FDH) with different peptide tags that can be recognized by MTG were linked together to obtain different proportions of cross-linked enzymes for efficient conversion of greenhouse gas carbon dioxide to formic acid. After cross-linking, we obtained "one-to-one" and "one-to-more" cross-linked enzyme aggregates. There is a minor residual loss of the two enzymes, the remaining enzyme activity of CA is more than 93%, and the remaining enzyme activity of FDH is more than 84%. In particular, the overall catalytic efficiency of the cross-linked enzyme is increased by 5.8 times compared with free enzymes and the thermal stability of FDH at different temperatures is improved. The applied strategy demonstrates the potential application of MTG in multi-enzyme assembly and synthetic biology.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    1
    Citations
    NaN
    KQI
    []