Chromatin aggregation depends on the anion species of the salts

1989 
Abstract The effects of anions on chromatin aggregation may be classified into three categories. First, monovalent anions, glutamate, acetate, chloride, and thiocyante, follow the lyotropic series in their effects on both H1 histone displacement and chromatin aggregation. Second, alkyl carboxylates and dicarboxylates differ in their ability to induce chromatin aggregation depending on charge density, suggesting possible interference by bulky alkyl chains with neutralization (screening) of closely spaced positive protein charges. Third, the multivalent anions, citrate3- and SO4(2-), bind tightly to histone and disrupt nucleosomes and thus interfere with chromatin aggregation. Substantial differences in chromatin aggregation were observed with different species of anions. At salt concentrations of 0-500 mN and pH 7.0, as much as 70% of the chromatin could be induced to aggregate by monosodium glutamate and sodium acetate, whereas only 10% or less was precipitated by NaSCN, Na2SO4, and Na3citrate. The physiological anion composition of the nucleus is not known; however, the anion effects discussed in the present work suggest a potential for regulation of chromatin condensation in higher eukaryotes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    9
    Citations
    NaN
    KQI
    []