Flexural creep behaviour of long glass fibre reinforced polyamide 6.6 under thermal-oxidative environment

2017 
This article aims to investigate the flexural creep behaviour as a function of temperature of long glass fibre polyamide 6.6 taking into account the thermal-oxidative degradation occurring during the test. The mould geometry has been chosen so as to reproduce some geometrical accidents (e.g. sharp frontal and tangential steps) occurring on industrial moulds. The nominal fibre content (10, 40 and 55 wt%), initial fibre length (short glass fibre, long glass fibre), load rate (up to 70%) and creep temperature (23℃, 100℃ and 130℃) have been considered to estimate the Findley’s model coefficients. A first investigation on the polyamide 6.6 degradation under thermo-oxidative environment has been led to understand the mechanisms of thermal-degradation of the polyamide 6.6 composites. The pure polyamide 6.6 matrix has shown a 20% increase of flexural modulus during the first period of ageing attributed to a combined chain scissions and cross-linking reactions. Then, a decrease of properties attributed to predomin...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    4
    Citations
    NaN
    KQI
    []